王宇晖
发布时间:2020-09-21
王宇晖教授博导
环境科学系
联系方式:021-67792558
电子邮箱:yhwang@dhu.edu.cn
邮 箱:201620
办公地址:松江区人民北路2999号四号学院楼5163
博士,教授,博导。国家环境损害司法鉴定人。师从国内著名水文水资源学家中国工程院院士王浩教授,致力于水生态环境修复方面的研究和技术研发及应用。在水生态修复领域发表第一(通讯)SCI收录论文40余篇,出版专著3部,授权国家发明专利10余项。承担国家自然科学基金、国家重点研发计划任务、国家科技支撑计划任务等科研项目。获得“大禹奖水利科技奖”特等奖,“上海市科技进步奖”二等奖,教育部“霍英东青年教师奖”三等奖,“中纺联教学成果奖”三等奖。入选上海市科委“青年科技启明星”计划,77779193永利“砺志计划”。担任《南水北调水利科技》杂志青年编委,《Water Research》等多个期刊特邀审稿人。
2007-2012年,77779193永利与中国水利水电科学研究院联培博士,导师:王 浩 院士
2003-2007年,77779193永利(中国纺织大学),环境科学专业,学士
2012-2014年,77779193永利,77779193永利,讲师
2014-2021年1月,77779193永利,77779193永利,副教授,硕导
2021年1月起,77779193永利,77779193永利,教授,博导/硕导
《环境水文学》、《环境管理学》、《ENVIRONMENTAL MONITORING》全英文课程、《MATLAB编程与微机上机》
水生态环境修复原理与技术、河湖生态动力学模型
[1] 国家自然科学基金青年科学基金项目(No. 51309053)—微电场-人工湿地修复水体重金属污染的效果和机理及优化调控
[2] 国家科技支撑计划课题专题项目(No. 2015BAB07B09)—南水北调中线水质差异应对关键技术研究与应用
[3] 国家重点研发计划专题项目—(No.2019YFC0408603)太原市高效节水与非常规水资源利用关键技术与示范
[4]国家重点研发计划专题项目—(No.2021YFC3000102)蓄滞洪区防洪经济生态协同发展模式与综合保障机制
[5] 上海市青年科技启明星计划C类项目(No.19QC1401100)—nZVI-BioChar协同强化人工湿地去除水中类固醇雌激素的应用及调控机制
[6] 77779193永利”励志计划”项目(No.B201310)—复合电极人工湿地对低C/N污水高效脱氮的机理研究
[7] 国家重点实验室开放基金项目(No.IWHR-SKL-201313)—电极强化潜流人工湿地水质净化的机理研究
[8] 生态环境部公益性行业专项课题专题项目(No.201309042)—流域综合规划环境影响评价关键技术研究
[9] 上海市金山区环境管理系统开发与测试项目(No.11315176)
[10] 农田面源污染逐级生态阻控体系与关键技术开发研究,企业委托研发项目
[11] 高比表面积生物亲和性MBR好氧厌氧生物填料研发中试,企业委托研发项目
[12] 河道水质提升微生物缓释促生激活混合填料研发试制,企业委托研发项目
[13] 人工湿地改性高容量磷吸附填料研发试制,企业委托研发项目
[14] 中央高校基本科研业务费专项基金(No.11315176)—生物炭基人工湿地修复水体类固醇雌激素污染的机理
[15] 国家重点基础研究发展计划973计划项目专题(No.2010CB951102)——气候变化对黄淮海地区水循环的影响机理和水安全评估
[16] 上海市“科技行动创新计划”社会发展领域项目(No.17DZ1202204)—电镀行业场地重金属迁移转化机制及其风险评估技术研究
[1] Li MJ, Wang YH*, Liu ZW, Sha Y, Korshin GV, Chen YYC, Metal-release potential from iron corrosion scales under stagnant and active flow, and varying water quality conditions. Water Research. 2020, 175, 115675.
[2] Si ZH, Wang YH*, Song XS, Cao X, Zhang X, Sand W. Mechanism and performance of trace metal removal by continuous-flow constructed wetlands coupled with a micro-electric field. Water Research. 2019, 164, 114937.
[3] Wang YH, Li MJ, Liu ZW, et al., Interactions between pyrene and heavy metals and their fates in a soil-maize (Zea mays L.) system: Perspectives from the root physiological functions and rhizosphere microbial community. Environmental Pollution, 2021, 287, 117616..
[4] Xu ZS, Qiao WW, Song XS, Wang YH, Pathways regulating the enhanced nitrogen removal in a pyrite based vertical-flow constructed wetland, Bioresource Technology, 2021, 325, 124705.
[5] Sun YX, Wang YH*, Cao X, Song XS. Hydraulic performance evaluation of a quasi-two dimensional constructed wetland microcosm using tracer tests and Visual MODFLOW simulation. Journal of Contaminant Hydrology. 2019, 226, 103537.
[6] Wang YH, Song XS, Li HW, Ding Y*. Removal of metals from water using a novel high rate algal pond and submerged macrophyte pond treatment reactor. Water Science & Technology. 2019, 79 (8): 1447–1457.
[7] Wang JF, Zhu QY, Shan YG, Wang YH*, Song XS, Lei XH. A comparative study on the efficiency of biodegradable EDDS and micro-electric field on the promotion of the phytoextraction by Commelina communis L. in Cu-contaminated soils. Geoderma. 2018,314.
[8] Wang YH, Yan DH, Wang JF, Ding Y, Song XS. Effects of Elevated CO2 and Drought on Plant Physiology, Soil Carbon and Soil Enzyme Activity with Glycine max (Soybean). Pedosphere. 2017, 27(5): 846-855.
[9] Wang JF, Song XS*, Wang YH*, Bai JH, Li MJ, Dong GQ, Lin FD, Lv YF, Yan DH. Bioenergy generation and rhizodegradation as affected by microbial community distribution in a coupled constructed wetland-microbial fuel cell system associated with three macrophytes. Science of Total Environment. 2017, 607-608(12): 53-62.
[10] Wang JF, Song XS, Wang YH*, Bai JH, Bai H, Yan DM, Cao Yin, Li YH, Yu ZL, Dong GQ. Bioelectricity generation, contaminant removal and bacterial community distribution as affected by substrate material size and aquatic macrophyte in constructed wetland-microbial fuel cell. Bioresource Technology. 2017, 245(12): 372-378.
[11] Wang JF, Wang YH*, Bai JH, Liu ZW, Song XS, Yan DM, Abiyu A, Zhao ZM, Yan DH. High efficiency of inorganic nitrogen removal by integrating biofilm-electrode with constructed wetland: Autotrophic denitrifying bacteria analysis. Bioresource Technology. 2017, 227(3): 7-14.
[12] Wang JF, Song XS, Wang YH*, Zhao ZM, Wang BD, Yan DH. Effects of electrode material and substrate concentration on the bioenergy output and wastewater treatment in air-cathode microbial fuel cell integrating with constructed wetland. Ecological Engineering. 2017, 99(2): 191-198.
[13] Ding Y, Wang W, Liu XP, Song XS, Wang YH*. Ullman JL. Intensified nitrogen removal of constructed wetland by novel integration of high rate algal pond biotechnology. Bioresource Technology. 2016, 219(11): 757-761.
[14] Wang W, Ding Y, Wang YH*, Song SX, Ambrose RF, Ullman JL. Intensified nitrogen removal in immobilized nitrifier enhanced constructed wetlands with external carbon addition. Bioresource Technology. 2016, 218(10): 1261-1265.
[15] Wang W, Ding Y, Wang YH*, Song XS, Ambrose RF, Ullman JL, Winfrey BK, Wang JF, Gong J. Treatment of rich ammonia nitrogen wastewater with polyvinyl alcohol immobilized nitrifier biofortified constructed wetlands. Ecological Engineering. 2016, 94(9): 7-11.
[16] Zhao ZM, Song XS*, Wang YH*, Wang DY, Wang SY, He Y, Ding Y, Wang W, Yan DH, Wang JF. Effects of algal ponds on vertical flow constructed wetlands under different sewage application techniques. Ecological Engineering. 2016, 93(8): 120-128.
[17] Song XS, Wang YH*, Wang SY, Yan DH. Addition of Fe2+ increase nitrate removal in vertical subsurface flow constructed wetlands. Ecological Engineering. 2016, 91(6): 487-494.
[18] He Y, Wang YH*, Song XS. High-effective denitrification of low C/N ratios wastewater by constructed wetland (CW) combined with biofilm-electrode reactor (BER). Bioresource Technology. 2016, 203(3): 245-251.
[19] Wang YH, Wang JF, Zhao XX*, Song XS, Gong J. The Inhibition and Adaptability of Four Wetland Plant Species to High Concentration of Ammonia Wastewater and Nitrogen Removal Efficiency in Constructed Wetlands. Bioresource Technology. 2016, 202(2):198-205.
[20] Wang YH, Liao WH, Ding Y, Wang X, Jiang YZ, Song XS, Lei XH*. Water resource spatiotemporal pattern evaluation of the upstream Yangtze River corresponding to climate changes. Quaternary International. 2015, 380-381(9): 187-196.
[21] Song XS, Ding Y, Wang YH*, Wang W, Wang G, Zhou B. Comparative study of nitrogen removal and bio-film clogging for three filter media packing strategies in vertical flow constructed wetlands. Ecological Engineering. 2015, 74(1): 1-7.
[22] Ding Y, Wang W, Song XS*, Wang G, Wang YH*. Effect of spray aeration on organics and nitrogen removal in vertical subsurface flow constructed wetland. Chemosphere, 2014, 117(12): 502-505.
[23] Wang YH, Jiang YZ, Liao WH, Gao P, Huang XM, Wang H, Song XS, Lei XH. 3-D hydro-environmental simulation of Miyun reservoir, Beijin. Journal of Hydro-environment Research, 2014, 8(4): 383-395.
[24] Ding Y, Wang W, Song XS, Wang YH*. Spatial distribution characteristics of environmental parameters and nitrogenous compounds in horizontal subsurface flow constructed wetland treating high nitrogen-content wastewater. Ecological Engineering. 2014, 70(9): 446-449.
[25] Wang YH, Song XS, Liao WH, Niu RH, Wang W, Ding Y, Wang Y, Yan DH. Impacts of inlet-outlet configuration, flow rate and filter size on hydraulic behavior of quasi-2-dimensional horizontal constructed wetland: NaCl and dye tracer test. Ecological Engineering. 2014, 69(8): 177-185.
[26] Wang YH, Song SX, Ding Y, Niu RH, Zhao XX, Yan DH. The impact of influent mode on nitrogen removal in horizontal subsurface flow constructed wetlands: A simple analysis of hydraulic efficiency and nutrient distribution. Ecological Engineering. 2013, 60(11): 271-275.
专著出版
[1]王宇晖, 薛伟, 廖卫红, 雷晓辉, 著. 水文模拟预测方法和应用The Method and Application of Hydrological Modeling, 2015. 中国水利水电出版社. ISBN: 978-7-5170-3064-5.
[2] 王宇晖, 廖卫红, 雷晓辉, 宋新山, 著. 流域水量水质联合模拟技术与应用, 2015. 中国水利水电出版社. ISBN: 978-7-5170-3100-0.
[3] 王俊峰,宋新山,刘昭伟,王宇晖,著. Micro-electric Field or MFC Constructed Wetlands for Water Purification, 2018. 中国水利水电出版社. ISBN: 978-7-5170-6453-4.
专利授权
[1]一种碳源自补给产沼气型高效脱氮水平潜流人工湿地,发明专利,ZL201810705355.9
[2] 一种吸附催化脱氮的锰负载丝瓜络纤维及其制备与应用,发明专利,ZL202110790067X
[3] 基于海绵铁化学反硝化的水肥一体化灌溉系统,发明专利,ZL201910275128.1
[4] 种植装置、生态拦截沟渠及农田污染的治理方法,发明专利,ZL202010606973.5
[5] 低C/N生活污水高效脱氮的复合电极水平潜流人工湿地装置,发明专利,ZL201310122176.X
[6] 一种高效处理有机污水的微生物燃料电池人工湿地,发明专利,ZL201410001954.4
[7] 一种地热自暖水平潜流人工湿地污水处理系统,发明专利,ZL2014101393633
[8] 一种间歇式运行的垂直流人工湿地增氧脱氮系统, 发明专利, ZL2014100026158.X
[9] 一体化硝化反硝化自驱动微电场强化人工湿地的装置,发明专利, ZL201510256060.4
[10] 一种多孔介质滤床悬浮颗粒物堵塞形态可视化分析系统,发明专利,ZL20161053713.7
[11] 一种人工湿地水动力研究实验装置,实用新型,ZL201320206442.2
[12] 一种藻菌共生表面流复合人工湿地系统,实用新型,ZL201320449052.8
[13] 一种占地面积小的塘床耦联复合型人工湿地净水系统,实用新型,ZL201320637308.8
[14] 间歇式运行的垂直流人工湿地增氧脱氮系统,实用新型,ZL201420003412.6
[15] 一种可辅助曝气及以反冲洗措施解决堵塞的人工湿地,实用新型,ZL201420293699.0
[16] 一种用中空纤维膜模拟植物根系进行微曝气的人工湿地,实用新型,ZL201420363732.2
[1]大禹水利科学技术奖, 特等, 气候变化对旱涝灾害的影响及风险评估技术, 2015, 大禹水利科学技术奖奖励委员会
[2] 上海市科技进步奖,二等,城镇黑臭水体生态治理及水质提升关键技术装备及应用,2019,上海市科学技术奖励管理办公室
[3]霍英东教育基金会第十七届高等院校青年教师奖,三等,教育部港澳台事务办公室
[4]2018年度77779193永利青年教师教学竞赛,二等奖
[5] 2017年度77779193永利优秀教师